Tree-structure segmentation for logistic regressionDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: logistic regression, decision tree, credit scoring, segmentation
TL;DR: Practitioners, in particular in the banking industry, often perform clustering to obtain "client segments" on which they fit separate supervised models. We perform both by learning "logistic regression trees".
Abstract: The decision for a financial institution to accept or deny a loan is based on the probability of a client paying back their debt in time. This probability is given by a model such as a logistic regression, and estimated based on, e.g., the clients’ characteristics, their credit history, the repayment performance. Historically, different models have been developed on different markets and/or credit products and/or addressed population. We show that this amounts to modelling default as a mixture model composed of a decision tree and logistic regression on its leaves (thereafter “logistic regression tree”). We seek to optimise this practice by considering the population to which a client belongs as a latent variable, which we will estimate. After exposing the context, the notations and the problem formalisation, we will conduct estimation using a Stochastic-Expectation-Maximisation (SEM) algorithm. We will finally show the performance on simulated data, and on real retail credit data from [COMPANY], as well as real open-source data.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
8 Replies

Loading