Distilling Knowledge from Text-to-Image Models Improves Visio-Linguistic Reasoning in CLIPDownload PDF

Anonymous

16 Oct 2023ACL ARR 2023 October Blind SubmissionReaders: Everyone
Abstract: Image-text contrastive models like CLIP have wide applications in zero-shot classification, image-text retrieval, and transfer learning. However, they often struggle on compositional visio-linguistic tasks (e.g., attribute-binding or object-relationships) where their performance is no better than random chance. To address this, we introduce SDS-CLIP, a lightweight and sample-efficient distillation method to enhance CLIP's compositional visio-linguistic reasoning. Our approach fine-tunes CLIP using a distillation objective borrowed from large text-to-image generative models like Stable-Diffusion, which are known for their strong visio-linguistic reasoning abilities. On the challenging Winoground benchmark, SDS-CLIP improves the visio-linguistic performance of various CLIP models by up to 7%, while on the ARO dataset, it boosts performance by up to 3%. This work underscores the potential of well-designed distillation objectives from generative models to enhance contrastive image-text models with improved visio-linguistic reasoning capabilities.
Paper Type: short
Research Area: Multimodality and Language Grounding to Vision, Robotics and Beyond
Contribution Types: Model analysis & interpretability
Languages Studied: English
Consent To Share Submission Details: On behalf of all authors, we agree to the terms above to share our submission details.
0 Replies

Loading