Adaptively Weighted Multi-task Deep Network for Person Attribute ClassificationOpen Website

2017 (modified: 27 Oct 2022)ACM Multimedia 2017Readers: Everyone
Abstract: Multi-task learning aims to boost the performance of multiple prediction tasks by appropriately sharing relevant information among them. However, it always suffers from the negative transfer problem. And due to the diverse learning difficulties and convergence rates of different tasks, jointly optimizing multiple tasks is very challenging. To solve these problems, we present a weighted multi-task deep convolutional neural network for person attribute analysis. A novel validation loss trend algorithm is, for the first time proposed to dynamically and adaptively update the weight for learning each task in the training process. Extensive experiments on CelebA, Market-1501 attribute and Duke attribute datasets clearly show that state-of-the-art performance is obtained; and this validates the effectiveness of our proposed framework.
0 Replies

Loading