Abstract: Robust and reliable perception of autonomous systems often relies on fusion of heterogeneous sensors, which poses great challenges for multisensor calibration. In this article, we propose a method for multisensor calibration based on Gaussian processes (GPs) estimated moving target trajectories, resulting with spatiotemporal calibration. Unlike competing approaches, the proposed method is characterized by the following: first, joint multisensor on-manifold spatiotemporal optimization framework, second, batch state estimation and interpolation using GPs, and, third, computational efficiency with O(n) complexity. It only requires that all sensors can track the same target. The method is validated in simulation and real-world experiments on the following five different multisensor setups: first, hardware triggered stereo camera, second, camera and motion capture system, third, camera and automotive radar, fourth, camera and rotating 3-D lidar, and, fifth, camera, 3-D lidar, and the motion capture system. The method estimates time delays with the accuracy up to a fraction of the fastest sensor sampling time, outperforming a state-of-the-art ego-motion method. Furthermore, this article is complemented by an open-source toolbox implementing the calibration method available at bitbucket.org/unizg-fer-lamor/calirad.
Loading