A Provably Efficient Model-Free Posterior Sampling Method for Episodic Reinforcement LearningDownload PDF

21 May 2021, 20:50 (modified: 22 Jan 2022, 15:45)NeurIPS 2021 PosterReaders: Everyone
Keywords: Reinforcement Learning, Posterior Sampling, Regret Bounds, Theory
Abstract: Thompson Sampling is one of the most effective methods for contextual bandits and has been generalized to posterior sampling for certain MDP settings. However, existing posterior sampling methods for reinforcement learning are limited by being model-based or lack worst-case theoretical guarantees beyond linear MDPs. This paper proposes a new model-free formulation of posterior sampling that applies to more general episodic reinforcement learning problems with theoretical guarantees. We introduce novel proof techniques to show that under suitable conditions, the worst-case regret of our posterior sampling method matches the best known results of optimization based methods. In the linear MDP setting with dimension, the regret of our algorithm scales linearly with the dimension as compared to a quadratic dependence of the existing posterior sampling-based exploration algorithms.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
10 Replies

Loading