Proteus: Exploring Protein Structure Generation for Enhanced Designability and Efficiency

Published: 02 May 2024, Last Modified: 25 Jun 2024ICML 2024 PosterEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Diffusion-based generative models have been successfully employed to create proteins with novel structures and functions. However, the construction of such models typically depends on large, pre-trained structure prediction networks, like RFdiffusion. In contrast, alternative models that are trained from scratch, such as FrameDiff, still fall short in performance. In this context, we introduce Proteus, an innovative deep diffusion network that incorporates graph-based triangle methods and a multi-track interaction network, eliminating the dependency on structure prediction pre-training with superior efficiency. We have validated our model's performance on de novo protein backbone generation through comprehensive in silico evaluations and experimental characterizations, which demonstrate a remarkable success rate. These promising results underscore Proteus's ability to generate highly designable protein backbones efficiently. This capability, achieved without reliance on pre-training techniques, has the potential to significantly advance the field of protein design.
Submission Number: 3329
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview