Diffusion Models for Causal Discovery via Topological OrderingDownload PDF

Published: 01 Feb 2023, Last Modified: 17 Sept 2023ICLR 2023 posterReaders: Everyone
Keywords: Diffusion Models, Causal Discovery, Topological Ordering, Score-based Methods
TL;DR: We use diffusion models for causal discovery by iteratively finding and removing leaves in causal graph, resulting in a efficient topological ordering algorithm for high-dimensional graphs.
Abstract: Discovering causal relations from observational data becomes possible with additional assumptions such as considering the functional relations to be constrained as nonlinear with additive noise (ANM). Even with strong assumptions, causal discovery involves an expensive search problem over the space of directed acyclic graphs (DAGs). \emph{Topological ordering} approaches reduce the optimisation space of causal discovery by searching over a permutation rather than graph space. For ANMs, the \emph{Hessian} of the data log-likelihood can be used for finding leaf nodes in a causal graph, allowing its topological ordering. However, existing computational methods for obtaining the Hessian still do not scale as the number of variables and the number of samples are increased. Therefore, inspired by recent innovations in diffusion probabilistic models (DPMs), we propose \emph{DiffAN}, a topological ordering algorithm that leverages DPMs for learning a Hessian function. We introduce theory for updating the learned Hessian without re-training the neural network, and we show that computing with a subset of samples gives an accurate approximation of the ordering, which allows scaling to datasets with more samples and variables. We show empirically that our method scales exceptionally well to datasets with up to $500$ nodes and up to $10^5$ samples while still performing on par over small datasets with state-of-the-art causal discovery methods. Implementation is available at \url{https://github.com/vios-s/DiffAN} .
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Probabilistic Methods (eg, variational inference, causal inference, Gaussian processes)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2210.06201/code)
19 Replies