Keywords: Causal Inference, Causal Discovery, Natural Language Process, Multi-agent
Abstract: Large Language Models (LLMs) have demonstrated significant potential in causal discovery tasks by utilizing their vast expert knowledge from extensive text corpora. However, the multi-agent capabilities of LLMs in causal discovery remain underexplored. This paper introduces a general framework to investigate this potential. The first is the Meta Agents Model, which relies exclusively on reasoning and discussions among LLM agents to conduct causal discovery. The second is the Coding Agents Model, which leverages the agents’ ability to plan, write, and execute code, utilizing advanced statistical libraries for causal discovery. The third is the Hybrid Model, which integrates both the Meta Agents Model and Coding Agents Model approaches, combining the statistical analysis and reasoning skills of multiple agents. Our proposed framework shows promising results by effectively utilizing LLMs’ expert knowledge, reasoning capabilities, multi-agent cooperation, and statistical causal methods. By exploring the multi-agent potential of LLMs, we aim to establish a foundation for further research in utilizing LLMs multi-agent for solving causal-related problems.
Primary Area: causal reasoning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6868
Loading