Reasoning Models Hallucinate More: Factuality-Aware Reinforcement Learning for Large Reasoning Models

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Hallucination, Large Reasoning Models, Reinforcement Learning
TL;DR: We reveal that reasoning-oriented RL fine-tuning significantly increases the prevalence of hallucinations and propose a FSPO approach via reinforcement learning.
Abstract: Large language models (LLMs) have significantly advanced in reasoning tasks through reinforcement learning (RL) optimization, achieving impressive capabilities across various challenging benchmarks. However, our empirical analysis reveals a critical drawback: reasoning-oriented RL fine-tuning significantly increases the prevalence of hallucinations. We theoretically analyze the RL training dynamics, identifying high-variance gradient, entropy-induced randomness, and susceptibility to spurious local optima as key factors leading to hallucinations. To address this drawback, we propose Factuality-aware Step-wise Policy Optimization (FSPO), an innovative RL fine-tuning algorithm incorporating explicit factuality verification at each reasoning step. FSPO leverages automated verification against given evidence to dynamically adjust token-level advantage values, incentivizing factual correctness throughout the reasoning process. Experiments across mathematical reasoning and hallucination benchmarks using Qwen2.5 and Llama models demonstrate that FSPO effectively reduces hallucinations while enhancing reasoning accuracy, substantially improving both reliability and performance.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 27389
Loading