Lower Bound on the Capacity of the Continuous-Space SSFM Model of Optical FiberDownload PDFOpen Website

2022 (modified: 25 Apr 2023)IEEE Trans. Inf. Theory 2022Readers: Everyone
Abstract: The capacity of a discrete-time model of optical fiber described by the split-step Fourier method (SSFM) as a function of the signal-to-noise ratio SNR and the number of segments in distance <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> is considered. It is shown that if <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K\geq \text {SNR} ^{2/3}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text {SNR} \rightarrow \infty $ </tex-math></inline-formula> , the capacity of the resulting continuous-space lossless model is lower bounded by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\frac {1}{2}\log _{2}(1+ \text {SNR}) - \frac {1}{2}+ o(1)$ </tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$o(1)$ </tex-math></inline-formula> tends to zero with SNR. As <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K \rightarrow \infty $ </tex-math></inline-formula> , the inter-symbol interference (ISI) averages out to zero due to the law of large numbers and the SSFM model tends to a diagonal phase noise model. It follows that, in contrast to the discrete-space model where there is only one signal degree-of-freedom (DoF) at high powers, the number of DoFs in the continuous-space model is at least half of the input dimension <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> . Intensity-modulation and direct detection achieves this rate. The pre-log in the lower bound when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K= \sqrt [\delta]{ \text {SNR}}$ </tex-math></inline-formula> is generally characterized in terms of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> . It is shown that if the nonlinearity parameter <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma \rightarrow \infty $ </tex-math></inline-formula> , the capacity of the continuous-space model is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\frac {1}{2}\log _{2}(1+ \text {SNR})+ o(1)$ </tex-math></inline-formula> . The SSFM model when the dispersion matrix does not depend on <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> is considered. It is shown that the capacity of this model when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K= \sqrt [\delta]{ \text {SNR}}$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta &gt;3$ </tex-math></inline-formula> , and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text {SNR} \rightarrow \infty $ </tex-math></inline-formula> is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\frac {1}{2n}\log _{2}(1+ \text {SNR})+ O(1)$ </tex-math></inline-formula> . Thus, there is only one DoF in this model. Finally, it is found that the maximum achievable information rates (AIRs) of the SSFM model with back-propagation equalization obtained using numerical simulation follows a double-ascent curve. The AIR characteristically increases with SNR, reaching a peak at a certain optimal power, and then decreases as SNR is further increased. The peak is attributed to a balance between noise and stochastic ISI. However, if the power is further increased, the AIR will increase again, approaching the lower bound <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\frac {1}{2}\log (1+ \text {SNR})- \frac {1}{2} + o(1)$ </tex-math></inline-formula> . The second ascent is because the ISI averages out to zero with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K \rightarrow \infty $ </tex-math></inline-formula> sufficiently fast.
0 Replies

Loading