Bio-xLSTM: Generative modeling, representation and in-context learning of biological and chemical sequences
Keywords: xLSTM, large language model, foundation model, DNA, protein, small molecule, SMILES, in-context learning, masked language modeling, causal language modeling, fill-in the middle, equivariance, reverse complementary sequence
TL;DR: Bio-xLSTM introduces a suite of xLSTM-based language models tailored for biological and chemical sequences, demonstrating proficiency in generative modeling, representation learning, and in-context learning across DNA, proteins, and small molecules.
Abstract: Language models for biological and chemical sequences enable crucial applications such as drug discovery, protein engineering, and precision medicine. Currently, these language models are predominantly based on Transformer architectures. While Transformers have yielded impressive results, their quadratic runtime dependency on sequence length complicates their use for long genomic sequences and in-context learning on proteins and chemical sequences. Recently, the recurrent xLSTM architecture has been shown to perform favorably compared to Transformers and modern state-space models (SSMs) in the natural language domain. Similar to SSMs, xLSTMs have linear runtime dependency and allow for constant-memory decoding at inference time, which makes them prime candidates for modeling long-range dependencies in biological and chemical sequences. In this work, we tailor xLSTM towards these domains and we propose a suite of language models called Bio-xLSTM. Extensive experiments in three large domains, genomics, proteins, and chemistry, were performed to assess xLSTM’s ability to model biological and chemical sequences. The results show that Bio-xLSTM is a highly proficient generative model for DNA, protein, and chemical sequences, learns rich representations, and can perform in-context learning for proteins and small molecules.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9684
Loading