Comparative Personalization for Multi-document Summarization

ACL ARR 2025 May Submission7034 Authors

20 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Personalized multi-document summarization (MDS) is essential for meeting individual user preferences of writing style and content focus for summaries. In this paper, we propose that for effective personalization, it is important to identify fine-grained differences between users' preferences by comparing the given user's preferences with other users' preferences. Motivated by this, we propose ComPSum, a personalized MDS framework. It first generates a structured analysis of a user by comparing their preferences with other users' preferences. The generated structured analysis is then used to guide the generation of personalized summaries. To evaluate the performance of ComPSum without reference, we propose AuthorMap, a fine-grained reference-free evaluation framework for personalized MDS. It evaluates the personalization of a system based on the authorship attribution between two personalized summaries generated for different users. For robust evaluation of personalized MDS, we construct PerMSum, a personalized MDS dataset in the review and news domain. We evaluate the performance of ComPSum on PerMSum using AuthorMap, showing that it outperforms strong baselines.
Paper Type: Long
Research Area: Summarization
Research Area Keywords: abstractive summarisation, multi-document summarization, personalization
Contribution Types: NLP engineering experiment, Data resources
Languages Studied: English
Keywords: personalization, multi-document summarization
Submission Number: 7034
Loading