GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group PropagationDownload PDF

Published: 01 Feb 2023, Last Modified: 17 Sept 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: Visual Recognition, Vision transformer architecture
TL;DR: A high-resolution vision transformer architecture based on a new efficient global information exchange mechanism for general visual recognition.
Abstract: We present the Group Propagation Vision Transformer (GPViT): a novel non- hierarchical (i.e. non-pyramidal) transformer model designed for general visual recognition with high-resolution features. High-resolution features (or tokens) are a natural fit for tasks that involve perceiving fine-grained details such as detection and segmentation, but exchanging global information between these features is expensive in memory and computation because of the way self-attention scales. We provide a highly efficient alternative Group Propagation Block (GP Block) to exchange global information. In each GP Block, features are first grouped to- gether by a fixed number of learnable group tokens; we then perform Group Propagation where global information is exchanged between the grouped fea- tures; finally, global information in the updated grouped features is returned back to the image features through a transformer decoder. We evaluate GPViT on a variety of visual recognition tasks including image classification, semantic seg- mentation, object detection, and instance segmentation. Our method achieves significant performance gains over previous works across all tasks, especially on tasks that require high-resolution outputs, for example, our GPViT-L3 out- performs Swin Transformer-B by 2.0 mIoU on ADE20K semantic segmentation with only half as many parameters. Code and pre-trained models are available at
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
11 Replies