Balancing Token Efficiency and Structural Accuracy in LLMs Image Generation by Combining VQ-VAE and Diffusion Tokenizers

24 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Visual Tokenizer, VQ-VAE, Diffusion
Abstract:

We proposes a novel visual tokenizer by combining high-level semantic tokens and low-level pixel tokens to represent images, aiming to address the challenges of image-to-sequence conversion for Large Language Models (LLMs). Existing visual tokenizers, such as VQ-VAE and diffusion-based models, either struggle with token explosion as image resolution increases or fail to capture detailed structural information. Our method introduces a dual-token system: high-level semantic tokens capture the main content of the image, while low-level pixel tokens preserve structural details. By integrating these tokens in a hybrid architecture, we leverage a VQ-VAE branch to generate low-resolution guidance and a diffusion process to reconstruct high-resolution images with both semantic coherence and structural accuracy. This approach significantly reduces the number of required tokens and enhances image reconstruction quality, offering an efficient solution for tasks like image generation and understanding based on LLMs.

Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3525
Loading