Sparse components distinguish visual pathways & their alignment to neural networks

ICLR 2025 Conference Submission12453 Authors

27 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: visual representations, alignment, sparse decomposition, neural pathways, brain and machine vision
Abstract: The ventral, dorsal, and lateral streams in high-level human visual cortex are implicated in distinct functional processes. Yet, deep neural networks (DNNs) trained on a single task model the entire visual system surprisingly well, hinting at common computational principles across these pathways. To explore this inconsistency, we applied a novel sparse decomposition approach to identify the dominant components of visual representations within each stream. Consistent with traditional neuroscience research, we find a clear difference in component response profiles across the three visual streams—identifying components selective for faces, places, bodies, text, and food in the ventral stream; social interactions, implied motion, and hand actions in the lateral stream; and some less interpretable components in the dorsal stream. Building on this, we introduce Sparse Component Alignment (SCA), a new method for measuring representational alignment between brains and machines that better captures the latent neural tuning of these two visual systems. We find that standard visual DNNs are more aligned with ventral than either dorsal or lateral representations. SCA reveals these distinctions with greater resolution than conventional population-level geometry, offering a measure of representational alignment that is sensitive to a system’s underlying axes of neural tuning.
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12453
Loading