Fair Differential Privacy Can Mitigate the Disparate Impact on Model AccuracyDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Abstract: The techniques based on the theory of differential privacy (DP) has become a standard building block in the machine learning community. DP training mechanisms offer strong guarantees that an adversary cannot determine with high confidence about the training data based on analyzing the released model, let alone any details of the instances. However, DP may disproportionately affect the underrepresented and relatively complicated classes. That is, the reduction in utility is unequal for each class. This paper proposes a fair differential privacy algorithm (FairDP) to mitigate the disparate impact on model accuracy for each class. We cast the learning procedure as a two-stage optimization problem, which integrates differential privacy with fairness. FairDP establishes a self-adaptive DP mechanism and dynamically adjusts instance influence in each class depending on the theoretical bias-variance bound. Our experimental evaluation shows the effectiveness of FairDP in mitigating the disparate impact on model accuracy among the classes on several benchmark datasets and scenarios ranging from text to vision.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Reviewed Version (pdf): https://openreview.net/references/pdf?id=eh0N0tyn4
10 Replies

Loading