Quantum Support Vector Machine for Classifying Noisy Data

Published: 01 Jan 2024, Last Modified: 06 Feb 2025IEEE Trans. Computers 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Noisy data is ubiquitous in quantum computer, greatly affecting the performance of various algorithms. However, existing quantum support vector machine models are not equipped with anti-noise ability, and often deliver low performance when learning accurate hyperplane normal vectors from noisy data. To attack this issue, an anti-noise quantum support vector machine algorithm is developed in this paper. Specifically, a weight factor is first embedded into the hinge loss, so as to construct the objective function of anti-noise support vector machine. And then, an alternative iterative optimization strategy and a quantum circuit are designed for solving the objective function, aiming to obtain the normal vector and intercept of the hyperplane that finally divides the data. Finally, the classification and anti-noise effect of the algorithm are verified on artificial dataset and public dataset. Experimental results show that the proposed algorithm is efficient, yet maintains stable accuracy in noisy data.
Loading