Distributional Measures of Semantic AbstractionOpen Website

2021 (modified: 10 Jun 2022)Frontiers Artif. Intell. 2021Readers: Everyone
Abstract: This article provides an in-depth study of distributional measures for distinguishing between degrees of semantic abstraction. Abstraction is considered a “central construct in cognitive science” (Barsalou, 2003) and a “process of information reduction that allows for efficient storage and retrieval of central knowledge” (Burgoon et al., 2013). Relying on the distributional hypothesis, computational studies have successfully exploited measures of contextual co-occurrence and neighbourhood density to distinguish between conceptual semantic categorisations. So far, these studies have modeled semantic abstraction across lexical-semantic tasks such as ambiguity; diachronic meaning changes; abstractness vs. concreteness; and hypernymy. Yet, the distributional approaches target different conceptual types of semantic relatedness, and as to our knowledge not much attention has been paid to apply, compare or analyse the computational abstraction measures across conceptual tasks. The current article suggests a novel perspective that exploits variants of distributional measures to investigate semantic abstraction in English in terms of the abstract–concrete dichotomy (e.g., glory–banana) and in terms of the generality–specificity distinction (e.g., animal–fish), in order to compare the strengths and weaknesses of the measures regarding categorisations of abstraction, and to determine and investigate conceptual differences.In a series of experiments we identify reliable distributional...
0 Replies

Loading