Scale-Aware Guided and Structure-Preserved Texture FilterDownload PDFOpen Website

2022 (modified: 27 Oct 2022)IEEE Geosci. Remote. Sens. Lett. 2022Readers: Everyone
Abstract: In this letter, a new texture filter with scale-aware gradients and structural preservation is proposed. The proposed filter uses a hybrid <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> - <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$H^{-1} $ </tex-math></inline-formula> variational model via measuring sparsity with scale-aware gradients by the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$L_{0}$ </tex-math></inline-formula> norm and structural fidelity by the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$H^{-1}$ </tex-math></inline-formula> norm with the embedded Laplacian operator. Extensive qualitative and quantitative experimental results demonstrate that the proposed method 1) smooths small-scale low/high contrast textures and intensive noise while preserving sharp and prominent structures simultaneously; 2) significantly outperforms state-of-the-art texture filtering methods; and 3) has fast convergence.
0 Replies

Loading