Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification

Published: 01 Jan 2023, Last Modified: 18 May 2025NLDB 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This case study investigates the task of job classification in a real-world setting, where the goal is to determine whether an English-language is appropriate for a graduate or entry-level position. We explore multiple approaches to text classification, including supervised approaches such as traditional models like Support Vector Machines (SVMs) and state-of-the-art deep learning methods such as DeBERTa. We compare them with Large Language Models (LLMs) used in both few-shot and zero-shot classification settings. To accomplish this task, we employ prompt engineering, a technique that involves designing prompts to guide the LLMs towards the desired output. Specifically, we evaluate the performance of two commercially available state-of-the-art GPT-3.5-based language models, text-davinci-003 and gpt-3.5-turbo. We also conduct a detailed analysis of the impact of different aspects of prompt engineering on the model’s performance.
Loading