Keywords: Large Language Models, In-Context Learning, and Adversarial Attacks
Abstract: Large Language Models (LLMs) can perform few-shot learning using either optimization-based approaches or In-Context Learning (ICL). Optimization-based methods often suffer from overfitting, as they require updating a large number of parameters with limited data. In contrast, ICL avoids overfitting but typically underperforms compared to optimization-based methods and is highly sensitive to the selection, order, and format of demonstration examples. To overcome these challenges, we introduce Context-aware Prompt Tuning (CPT), a method inspired by ICL, Prompt Tuning (PT), and adversarial attacks. CPT builds on the ICL strategy of concatenating examples before the input, extending it by incorporating PT-like learning to refine the context embedding through iterative optimization, extracting deeper insights from the training examples. Our approach carefully modifies specific context tokens, considering the unique structure of the examples within the context.In addition to updating the context with PT-like optimization, CPT draws inspiration from adversarial attacks, adjusting the input based on the labels present in the context while preserving the inherent value of the user-provided data. To ensure robustness and stability during optimization, we employ a projected gradient descent algorithm, constraining token embeddings to remain close to their original values and safeguarding the quality of the context. Our method has demonstrated superior accuracy across multiple classification tasks using various LLM models, outperforming existing baselines and effectively addressing the overfitting challenge in few-shot learning.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1101
Loading