Data Similarity is Not Enough to Explain Language Model Performance

Published: 07 Oct 2023, Last Modified: 01 Dec 2023EMNLP 2023 MainEveryoneRevisionsBibTeX
Submission Type: Regular Short Paper
Submission Track: Language Modeling and Analysis of Language Models
Submission Track 2: Interpretability, Interactivity, and Analysis of Models for NLP
Keywords: similarity, dataset difficulty, pretraining data analysis
Abstract: Large language models achieve high performance on many but not all downstream tasks. The interaction between pretraining data and task data is commonly assumed to determine this variance: a task with data that is more similar to a model's pretraining data is assumed to be easier for that model. We test whether distributional and example-specific similarity measures (embedding-, token- and model-based) correlate with language model performance through a large-scale comparison of the Pile and C4 pretraining datasets with downstream benchmarks. Similarity correlates with performance for multilingual datasets, but in other benchmarks, we surprisingly find that similarity metrics are not correlated with accuracy or even each other. This suggests that the relationship between pretraining data and downstream tasks is more complex than often assumed.
Submission Number: 4316
Loading