Abstract: We focus on enabling robots to proactively assist humans in assembly tasks by adapting to their preferred sequence of actions. Much work on robot adaptation requires human demonstrations of the task. However, human demonstrations of real-world assemblies can be tedious and time-consuming. Thus, we propose learning human preferences from demonstrations in a shorter, canonical task to predict user actions in the actual assembly task. The proposed system uses the preference model learned from the canonical task as a prior and updates the model through interaction when predictions are inaccurate. We evaluate the proposed system in simulated assembly tasks and in a real-world human-robot assembly study and we show that both transferring the preference model from the canonical task, as well as updating the model online, contribute to improved accuracy in human action prediction. This enables the robot to proactively assist users, significantly reduce their idle time, and improve their experience working with the robot, compared to a reactive robot.
0 Replies
Loading