MaSS: Multi-attribute Selective Suppression for Utility-preserving Data Transformation from an Information-theoretic Perspective

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Privacy Protection, Utility Preservation, Information Theory, Contrastive Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The growing richness of large-scale datasets has been a crucial driving force behind the rapid advancement and wide adoption of machine learning technologies. The massive collection and usage of data, however, pose an increasing risk for people’s private and sensitive information due to either inadvertent mishandling or malicious exploitation. Besides legislative solutions, many technical approaches have been proposed towards data privacy protection. However, they bear various limitations such as leading to degraded data availability and utility, or relying on heuristics and lacking solid theoretical bases. To overcome these limitations, we propose a formal information-theoretic definition for this utility-preserving privacy protection problem, and design a data-driven learnable data transformation framework that is capable of selectively suppressing sensitive attributes from target datasets while preserving the other useful attributes, regardless of whether or not they are known in advance or explicitly annotated for preservation. We provide rigorous theoretical analyses on the operational bounds for our framework, and carry out comprehensive experimental evaluations using datasets of a variety of modalities, including facial images, voice audio clips, and human activity motion sensor signals. Results demonstrate the effectiveness and generalizability of our method on different tasks and configurations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6515
Loading