Structured and Abstractive Reasoning on Multi-modal Relational Knowledge Images

ICLR 2026 Conference Submission16402 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multi-modal Knowledge Graphs, Abstractive Reasoning, Large Language Models
TL;DR: A new perspective for MLLM capability enhancement on images with abstractive relational knowledge.
Abstract: Understanding and reasoning with abstractive information from the visual modality presents significant challenges for current multi-modal large language models (MLLMs). Among the various forms of abstractive information, Multi-Modal Relational Knowledge (MMRK), which represents abstract relational structures between multi-modal entities using node-edge formats, remains largely under-explored. In particular, STructured and Abstractive Reasoning (STAR) on such data has received little attention from the research community. To bridge the dual gaps in large-scale high-quality data and capability enhancement methodologies, this paper makes the following key contributions: (i). An automatic STAR data engine capable of synthesizing images with MMRK to build multi-modal instruction data with reliable chain-of-thought thinking for various STAR tasks and (ii). A comprehsive two-stage capability enhancement training framework, accompanied by a suite of evaluation protocols tailored to different STAR tasks. Based upon these contributions, we introduce STAR-64K, a dataset comprising 64K high-quality multi-modal instruction samples, and conduct experiments across 5 open-source MLLMs. Experimental results show that our two-stage enhancement framework enables smaller 3B/7B models to significantly outperform GPT-4o in STAR. Additionally, we provide in-depth analysis regarding the effectiveness of various designs, data transferability, and scalability.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 16402
Loading