Cross-Spectral Iris Recognition by Learning Device-Specific BandDownload PDFOpen Website

2022 (modified: 18 Nov 2022)IEEE Trans. Circuits Syst. Video Technol. 2022Readers: Everyone
Abstract: Cross-spectral recognition is still an open challenge in iris recognition. In cross-spectral iris recognition, there exist distinct device-specific bands between near-infrared (NIR) and visible (VIS) images, resulting in the distribution gap between samples from different spectra and thus severe degradation in recognition performance. To tackle this problem, we propose a new cross-spectral iris recognition method to learn spectral-invariant features by estimating device-specific bands. In the proposed method, <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</b> abor <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</b> rident <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</b> etwork (GTN) first utilizes the Gabor function’s priors to perceive iris textures under different spectra, and then codes the device-specific band as the residual component to assist the generation of spectral-invariant features. By investigating the device-specific band, GTN effectively reduces the impact of device-specific bands on identity features. Besides, we make three efforts to further reduce the distribution gap. First, <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</b> pectral <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</b> dversarial <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</b> etwork (SAN) adopts a class-level adversarial strategy to align feature distributions. Second, <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</b> ample- <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</b> nchor (SA) loss upgrades triplet loss by pulling samples to their class center and pushing away from other class centers. Third, we develop a higher-order alignment loss to measures the distribution gap according to space bases and distribution shapes. Extensive experiments on five iris datasets demonstrate the efficacy of our proposed method for cross-spectral iris recognition.
0 Replies

Loading