Efficient Off-Policy Learning for High-Dimensional Action Spaces

Published: 22 Jan 2025, Last Modified: 13 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: reinforcement learning, trust region
Abstract: Existing off-policy reinforcement learning algorithms often rely on an explicit state-action-value function representation, which can be problematic in high-dimensional action spaces due to the curse of dimensionality. This reliance results in data inefficiency as maintaining a state-action-value function in such spaces is challenging. We present an efficient approach that utilizes only a state-value function as the critic for off-policy deep reinforcement learning. This approach, which we refer to as Vlearn, effectively circumvents the limitations of existing methods by eliminating the necessity for an explicit state-action-value function. To this end, we leverage a weighted importance sampling loss for learning deep value functions from off-policy data. While this is common for linear methods, it has not been combined with deep value function networks. This transfer to deep methods is not straightforward and requires novel design choices such as robust policy updates, twin value function networks to avoid an optimization bias, and importance weight clipping. We also present a novel analysis of the variance of our estimate compared to commonly used importance sampling estimators such as V-trace. Our approach improves sample complexity as well as final performance and ensures consistent and robust performance across various benchmark tasks. Eliminating the state-action-value function in Vlearn facilitates a streamlined learning process, yielding high-return agents.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7290
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview