Keywords: Natural Language Processing, Text Classification, Information Geomtery, Sentiment Analysis
Abstract: A growing body of recent evidence has highlighted the limitations of natural language processing (NLP) datasets and classifiers. These include the presence of annotation artifacts in datasets, classifiers relying on shallow features like a single word (e.g., if a movie review has the word "romantic", the review tends to be positive), or unnecessary words (e.g., learning a proper noun to classify a movie as positive or negative). The presence of such artifacts has subsequently led to the development of challenging datasets to force the model to generalize better. While a variety of heuristic strategies, such as counterfactual examples and contrast sets, have been proposed, the theoretical justification about what makes these examples difficult for the classifier is often lacking or unclear. In this paper, using tools from information geometry, we propose a theoretical way to quantify the difficulty of an example in NLP. Using our approach, we explore difficult examples for several deep learning architectures. We discover that BERT, CNN and fasttext are susceptible to word substitutions in high difficulty examples. These classifiers tend to perform poorly on the FIM test set. (generated by sampling and perturbing difficult examples, with accuracy dropping below 50%). We replicate our experiments on 5 NLP datasets (YelpReviewPolarity, AGNEWS, SogouNews, YelpReviewFull and Yahoo Answers). On YelpReviewPolarity we observe a correlation coefficient of -0.4 between resilience to perturbations and the difficulty score. Similarly we observe a correlation of 0.35 between the difficulty score and the empirical success probability of random substitutions. Our approach is simple, architecture agnostic and can be used to study the fragilities of text classification models. All the code used will be made publicly available, including a tool to explore the difficult examples for other datasets.
One-sentence Summary: We propose a novel approach to understand the fragility of NLP examples, highlighting limitations in current evaluation methods of text classifiers.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Reviewed Version (pdf): https://openreview.net/references/pdf?id=dJdCdnMe9K
10 Replies
Loading