Mark Your LLM: Detecting the Misuse of Open-Source Large Language Models via Watermarking

Published: 06 Mar 2025, Last Modified: 16 Apr 2025WMARK@ICLR2025EveryoneRevisionsBibTeXCC BY 4.0
Track: long paper (up to 9 pages)
Keywords: ethical considerations in NLP applications, llm watermark
TL;DR: We propose using two watermarking methods to help detect the misuse of open-source LLMs.
Abstract: As open-source large language models (LLMs) like Llama3 become more capable, it is crucial to develop watermarking techniques to detect their potential misuse. Existing watermarking methods either add watermarks during LLM inference, which is unsuitable for open-source LLMs, or primarily target classification LLMs rather than recent generative LLMs. Adapting these watermarks to open-source LLMs for misuse detection remains an open challenge. This work defines two misuse scenarios for open-source LLMs: intellectual property (IP) violation and LLM Usage Violation. Then we explore the application of inference-time watermark distillation and backdoor watermarking in these contexts. We propose comprehensive evaluation methods to assess the impact of various real-world further fine-tuning scenarios on watermarks and the effect of these watermarks on LLM performance. Our experiments reveal that backdoor watermarking could effectively detect IP Violation, while inference-time watermark distillation is applicable in both scenarios but less robust to further fine-tuning and has a more significant impact on LLM performance compared to backdoor watermarking. Exploring more advanced watermarking methods for open-source LLMs to detect their misuse should be an important future direction.
Presenter: ~Yijie_Xu2
Format: Maybe: the presenting author will attend in person, contingent on other factors that still need to be determined (e.g., visa, funding).
Funding: Yes, the presenting author of this submission falls under ICLR’s funding aims, and funding would significantly impact their ability to attend the workshop in person.
Anonymization: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and identifying URLs.
Submission Number: 1
Loading