Federated Learning over Connected Modes

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Federated Learning, Linear Mode Connectivity
TL;DR: Floco addresses the challenges of statistical heterogeneity in cross-silo federated learning by leveraging linear mode connectivity.
Abstract: Statistical heterogeneity in federated learning poses two major challenges: slow global training due to conflicting gradient signals, and the need of personalization for local distributions. In this work, we tackle both challenges by leveraging recent advances in \emph{linear mode connectivity} --- identifying a linearly connected low-loss region in the parameter space of neural networks, which we call solution simplex. We propose federated learning over connected modes (\textsc{Floco}), where clients are assigned local subregions in this simplex based on their gradient signals, and together learn the shared global solution simplex. This allows personalization of the client models to fit their local distributions within the degrees of freedom in the solution simplex and homogenizes the update signals for the global simplex training. Our experiments show that \textsc{Floco} accelerates the global training process, and significantly improves the local accuracy with minimal computational overhead in cross-silo federated learning settings.
Supplementary Material: zip
Primary Area: Other (please use sparingly, only use the keyword field for more details)
Submission Number: 18888
Loading