Bridging the Gap Between Foundation Models and Heterogeneous Federated Learning

18 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Federated Learning, Model Compression, Foundation Models, Model Deployment, Resource Constraints Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Federated learning (FL) offers privacy-preserving decentralized machine learning, optimizing models at edge clients without sharing private data. Simultaneously, foundation models (FMs) have gained traction in the artificial intelligence (AI) community due to their exceptional performance across various tasks. However, integrating FMs into FL presents challenges, primarily due to their substantial size and intensive resource requirements. This is especially true when considering the resource heterogeneity in edge FL systems. We present an adaptive framework for Resource-aware Federated Foundation Models (RaFFM) to address these challenges. RaFFM introduces specialized model compression algorithms tailored for FL scenarios, such as salient parameter prioritization and high-performance subnetwork extraction. These algorithms enable dynamic scaling of given transformer-based FMs to fit heterogeneous resource constraints at the network edge during both FL's optimization and deployment stages. Experimental results demonstrate that RaFFM shows significant superiority in resource utilization efficiency and uses fewer resources to deploy FMs to FL. Despite the lower resource consumption, target models optimized by RaFFM achieve performance on par with traditional FL methods applied to full-sized FMs. This is evident across tasks in both natural language processing and computer vision domains.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1488
Loading