Memory-Efficient Fine-Tuning via Structured Neural Network Pruning

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Transformer, Fine-tuning, Memory efficient learning
TL;DR: We propose a new memory- and parameter-efficient fine-tuning method inspired by structural NN pruning.
Abstract: Fine-tuning is an important step in adapting foundation models such as large language models to downstream tasks. To make this step more accessible to users with limited computational budgets, it is crucial to develop fine-tuning methods that are memory and computationally efficient. Sparse Fine-tuning (SFT) and Low-rank adaptation (LoRA) are two frameworks that have emerged for addressing this problem, and have been adopted widely in practice. In this work, we develop a new SFT framework, based on ideas from neural network pruning. At a high level, we first identify "important" neurons/nodes using feature importance metrics from network pruning (specifically, we use the structural pruning method), and then perform fine-tuning by restricting to weights involving these neurons. Using experiments on both vision and language tasks, we demonstrate that our method significantly improves the memory efficiency of SFT without increasing training time complexity and implementation complexity, while achieving accuracy comparable to state-of-the-art methods such as LoRA and its variants.
Supplementary Material: pdf
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11998
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview