In-distribution and Out-of-distribution Generalization for Graph Neural NetworksDownload PDF

Published: 01 Feb 2023, 19:30, Last Modified: 13 Feb 2023, 23:27Submitted to ICLR 2023Readers: Everyone
Keywords: Graph Neural Networks, Generalization Bounds, Out-of-distribution generalization, Learning theory
Abstract: Graph neural networks (GNNs) are models that allow learning with structured data of varying size. Despite their popularity, theoretical understanding of the generalization of GNNs is an under-explored topic. In this work, we expand the theoretical understanding of both in-distribution and out-of-distribution generalization of GNNs. Firstly, we improve upon the state-of-the-art PAC-Bayes (in-distribution) generalization bound primarily by reducing an exponential dependency on the node degree to a linear dependency. Secondly, utilizing tools from spectral graph theory, we prove some rigorous guarantees about the out-of-distribution (OOD) size generalization of GNNs, where graphs in the training set have different numbers of nodes and edges from those in the test set. To empirically verify our theoretical findings, we conduct experiments on both synthetic and real-world graph datasets. Our computed generalization gaps for the in-distribution case significantly improve the state-of-the-art PAC-Bayes results. For the OOD case, experiments on community classification tasks in large social networks show that GNNs achieve strong size generalization performance in cases guaranteed by our theory.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
17 Replies