MSFANet: A Light Weight Object Detector Based on Context Aggregation and Attention Mechanism for Autonomous Mining TruckDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 13 May 2023IEEE Trans. Intell. Veh. 2023Readers: Everyone
Abstract: Accurate and reliable object detection is a fundamental component of perception system for autonomous driving. Specially, in some circumstances like autonomous driving in surface mine, there is a fact that the particularity of scene brings tremendous challenges for object detection with a series of problems caused by the multi-scale and camouflaged objects. In this paper, a multi-scale feature fusion and attention based multi-branches framework was proposed to improve the performance of object detection for above problems called MSFANet. In the proposed MSFANet, a multi-scale feature fusion module, which was used to capture the rich context features for multi-scale high level feature maps, and a multi-scale attention module, which was used to enhance the feature saliency of objects with different scales, were designed. What's more, to improve the performance of multi-scale object detection, we build 4 different prediction branches for large, medium small and smaller scale objects respectively. At last, we built our own dataset for automatic driving in surface mine called SurMine and test the model at our own datasets and KITTI benchmark. It achieved 82.7 mAP(%) and 92.57 mAP(%) in 32 36 ms on a TITAN RTX, compared to 80.2 mAP(%) and 87.83 mAP(%) in 28 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${\sim }$</tex-math></inline-formula> 34 ms by YOLOv7 on SurMine and KITTI benchmarks.
0 Replies

Loading