Learning to Optimize for Reinforcement Learning

Published: 15 May 2024, Last Modified: 14 Nov 2024RLC 2024EveryoneRevisionsBibTeXCC BY 4.0
Keywords: learning to optimize, reinforcement learning
TL;DR: We present the first learned optimizer for deep reinforcement learning tasks that works well in practice.
Abstract: In recent years, by leveraging more data, computation, and diverse tasks, learned optimizers have achieved remarkable success in supervised learning, outperforming classical hand-designed optimizers. Reinforcement learning (RL) is essentially different from supervised learning, and in practice, these learned optimizers do not work well even in simple RL tasks. We investigate this phenomenon and identify two issues. First, the agent-gradient distribution is non-independent and identically distributed, leading to inefficient meta-training. Moreover, due to highly stochastic agent-environment interactions, the agent-gradients have high bias and variance, which increases the difficulty of learning an optimizer for RL. We propose pipeline training and a novel optimizer structure with a good inductive bias to address these issues, making it possible to learn an optimizer for reinforcement learning from scratch. We show that, although only trained in toy tasks, our learned optimizer can generalize to unseen complex tasks in Brax.
Submission Number: 55
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview