Localized Concept Erasure in Text-to-Image Diffusion Models via High-Level Representation Misdirection

Published: 26 Jan 2026, Last Modified: 11 Feb 2026ICLR 2026 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Concept Erasing, Unlearning, Robustness, Text-to-Image Generation, Diffusion Models
Abstract: Recent advances in text-to-image (T2I) diffusion models have seen rapid and widespread adoption. However, their powerful generative capabilities raise concerns about potential misuse for synthesizing harmful, private, or copyrighted content. To mitigate such risks, concept erasure techniques have emerged as a promising solution. Prior works have primarily focused on fine-tuning the denoising component (e.g., the U-Net backbone). However, recent causal tracing studies suggest that visual attribute information is localized in the early self-attention layers of the text encoder, indicating a potential alternative for concept erasing. Building on this insight, we conduct preliminary experiments and find that directly fine-tuning early layers can suppress target concepts but often degrades the generation quality of non-target concepts. To overcome this limitation, we propose High-Level Representation Misdirection (HiRM), which misdirects high-level semantic representations of target concepts in the text encoder toward designated vectors such as random directions or semantically defined directions (e.g., super-categories), while updating only early layers that contain causal states of visual attributes. Our decoupling strategy enables precise concept removal with minimal impact on unrelated concepts, as demonstrated by strong results on UnlearnCanvas and NSFW benchmarks across diverse targets (e.g., objects, styles, nudity). HiRM also preserves generative utility at low training cost and transfers effectively to state-of-the-art architectures such as Flux without additional training.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 15032
Loading