Abstract: Dialogue State Tracking (DST) is a very complex task that requires precise understanding and information tracking of multi-domain conversations between users and dialogue systems. Many task-oriented dialogue systems use dialogue state tracking technology to infer users’ goals from the history of the conversation. Existing approaches for DST are usually conditioned on previous dialogue states. However, the dependency on previous dialogues makes it very challenging to prevent error propagation to subsequent turns of a dialogue. In this paper, we propose Neural Retrieval Augmentation to alleviate this problem by creating a Neural Index based on dialogue context. Our NRA-DST framework efficiently retrieves dialogue context from the index built using a combination of unstructured dialogue state and structured
user/system utterances. We explore a simple pipeline resulting in a retrieval-guided generation approach for training a DST model. Experiments on different retrieval methods for augmentation show that neural retrieval augmentation is the best performing retrieval method for DST. Our evaluations on the large-scale MultiWOZ dataset show that our model outperforms the baseline approaches.
0 Replies
Loading