Escaping the Sample Trap: Fast and Accurate Epistemic Uncertainty Estimation with Pairwise-Distance Estimators

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Calibration & Uncertainty Quantification, Active Learning, Ensemble Methods, Multimodal Learning, Probabilistic Methods
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: This work presents a novel approach, using pairwise-distance estimators (PaiDEs), for efficiently estimating epistemic uncertainty in ensemble models, offering significantly faster and more accurate uncertainty estimates in higher-dimensions.
Abstract: In machine learning, the ability to assess uncertainty in model predictions is crucial for decision-making, safety-critical applications, and model generalizability. This work introduces a novel approach for epistemic uncertainty estimation for ensemble models using pairwise-distance estimators (PaiDEs). These estimators utilize the pairwise-distance between model components to establish bounds on entropy, which are then used as estimates for information-based criterion. Unlike recent deep learning methods for epistemic uncertainty estimation, which rely on sample-based Monte Carlo estimators, PaiDEs are able to estimate epistemic uncertainty up to 100 times faster, over a larger input space (up to 100 times) and perform more accurately in higher dimensions. To validate our approach, we conducted a series of experiments commonly used to evaluate epistemic uncertainty estimation: 1D sinusoidal data, $\textit{Pendulum-v0}$, $\textit{Hopper-v2}$, $\textit{Ant-v2}$ and $\textit{Humanoid-v2}$. For each experimental setting, an Active Learning framework was applied to demonstrate the advantages of PaiDEs for epistemic uncertainty estimation.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7540
Loading