VRNN’s got a GAN: Generating Time Series using Variational Recurrent Neural Models with Adversarial Training

TMLR Paper562 Authors

04 Nov 2022 (modified: 17 Sept 2024)Rejected by TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Time-series data generation is a machine learning task growing in popularity, and has been a focus of deep generative methods. The task is especially important in fields where large amounts of training data are not available, and in applica- tions where privacy preservation using synthetic data is preferred. In the past, generative adversarial models (GANs) were combined with recurrent neural net- works (RNNs) to produce realistic time-series data. Moreover, RNNs with time- step variational autoencoders were shown to have the ability to produce diverse temporal realizations. In this paper, we propose a novel data generating model, dubbed VRNN-GAN, that employs an adversarial framework with an RNN-based Variational Autoencoder (VAE) serving as the generator and a bidirectional RNN serving as the discriminator. The recurrent VAE captures temporal dynamics into a learned time-varying latent space while the adversarial training encourages the generation of realistic time-series data. We compared the performance of VRNN- GAN to state-of-the-art deep generative methods on the task of generating syn- thetic time-series data. We show that VRNN-GAN achieves the best predictive score across all methods and yields competitive results in other well-established performance measures compared to the state-of-the-art.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Antoni_B._Chan1
Submission Number: 562
Loading