Towards Effective Discrimination Testing for Generative AI

ICLR 2025 Conference Submission12192 Authors

27 Sept 2024 (modified: 19 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Generative AI, LLMs, fairness, discrimination, policy, diffusion
Abstract: Generative AI (GenAI) models present new challenges in testing for, and regulating against, discriminatory behavior. In this paper, we argue that GenAI fairness research still has not met these challenges: there is a dearth of reliable bias assessment methods for GenAI systems that speak to regulatory goals. This leads to ineffective regulation that can allow deployment of reportedly fair, yet actually discriminatory GenAI systems. Towards remedying this problem, we connect the legal and technical literature around GenAI bias evaluation and identify areas of misalignment. Through four case studies, we demonstrate how this misalignment between fairness testing techniques and regulatory goals can result in discriminatory outcomes in real-world deployments, especially in adaptive or complex environments. We offer practical recommendations for improving discrimination testing to better align with regulatory goals and enhance the reliability of fairness assessments in future deployments.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12192
Loading