Learning Case Relevance in Case-Based Reasoning with Abstract Argumentation

Published: 01 Jan 2023, Last Modified: 31 Jul 2025JURIX 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Case-based reasoning is known to play an important role in several legal settings. We focus on a recent approach to case-based reasoning, supported by an instantiation of abstract argumentation whereby arguments represent cases and attack between arguments results from outcome disagreement between cases and a notion of relevance. We explore how relevance can be learnt automatically with the help of decision trees, and explore the combination of case-based reasoning with abstract argumentation (AA-CBR) and learning of case relevance for prediction in legal settings. Specifically, we show that, for two legal datasets, AA-CBR with decision-tree-based learning of case relevance performs competitively in comparison with decision trees, and that AA-CBR with decision-tree-based learning of case relevance results in a more compact representation than their decision tree counterparts, which could facilitate cognitively tractable explanations.
Loading