Robust Multi-Agent Reinforcement Learning Driven by Correlated EquilibriumDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Robust, Multi-agent, Reinforcement Learning, Correlated Equilibrium
Abstract: In this paper we deal with robust cooperative multi-agent reinforcement learning (CMARL). While CMARL has many potential applications, only a trained policy that is robust enough can be confidently deployed in real world. Existing works on robust MARL mainly apply vanilla adversarial training in centralized training and decentralized execution paradigm. We, however, find that if a CMARL environment contains an adversarial agent, the performance of decentralized equilibrium might perform significantly poor for achieving such adversarial robustness. To tackle this issue, we suggest that when execution the non-adversarial agents must jointly make the decision to improve the robustness, therefore solving correlated equilibrium instead. We theoretically demonstrate the superiority of correlated equilibrium over the decentralized one in adversarial MARL settings. Therefore, to achieve robust CMARL, we introduce novel strategies to encourage agents to learn correlated equilibrium while maximally preserving the convenience of the decentralized execution. The global variables with mutual information are proposed to help agents learn robust policies with MARL algorithms. The experimental results show that our method can dramatically boost performance on the SMAC environments.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=jvezc2KBk5
11 Replies

Loading