Abstract: A randomized quaternion singular value decomposition algorithm based on block Krylov iteration (RQSVD-BKI) is presented to solve the low-rank quaternion matrix approximation problem. The upper bounds of deterministic approximation error and expected approximation error for the RQSVD-BKI algorithm are also given. It is shown by numerical experiments that the running time of the RQSVD-BKI algorithm is smaller than that of the quaternion singular value decomposition, and the relative errors of the RQSVD-BKI algorithm are smaller than those of the randomized quaternion singular value decomposition algorithm in Liu et al. (SIAM J. Sci. Comput., 44(2): A870-A900 (2022)) in some cases. In order to further illustrate the feasibility and effectiveness of the RQSVD-BKI algorithm, we use it to deal with the problem of color image inpainting.
Loading