Abstract: Author summary While recording from multiple regions of the brain, how does one best incorporate prior information about anatomical regions while accurately representing the data? Here, we introduce Localized semi-NMF (LocaNMF), an algorithm that efficiently decomposes widefield video data into meaningful spatial and temporal components that can be decoded and compared across different behavioral sessions and experimental conditions. Mapping the inferred components onto well-defined brain regions using a widely-used brain atlas provides an interpretable, stable decomposition. LocaNMF allows us to satisfactorily extract the activity of the different brain regions in individual mice in a data-driven manner, while taking into account mouse-specific and preparation-specific differences.
0 Replies
Loading