Understanding Alzheimer disease’s structural connectivity through explainable AIDownload PDF

25 Jan 2020 (modified: 27 Jun 2020)MIDL 2020 Conference Blind SubmissionReaders: Everyone
  • Keywords: Structural connectome, diffusion weighted MRI, deep learning, saliency maps, Alzheimer’s Disease
  • Track: full conference paper
  • Paper Type: well-validated application
  • Abstract: In the following work, we use a modified version of deep BrainNet convolutional neural network (CNN) trained on the diffusion weighted MRI (DW-MRI) tractography connectomes of patients with Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) to better understand the structural connectomics of that disease. We show that with a relatively simple connectomic BrainNetCNN used to classify brain images and explainable AI techniques, one can underline brain regions and their connectivity involved in AD. Results reveal that the connected regions with high structural differences between groups are those also reported in previous AD literature. Our findings support that deep learning over structural connectomes is a powerful tool to leverage the complex structure within connectomes derived from diffusion MRI tractography. To our knowledge, our contribution is the first explainable AI work applied to structural analysis of a degenerative disease.
  • Source Latex: zip
  • Presentation Upload: zip
  • Presentation Upload Agreement: I agree that my presentation material (videos and slides) will be made public.
14 Replies

Loading