A Cognitive Model for Learning Abstract Relational Structures from Memory-based Decision-Making Tasks

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Brain-inspired model; hippocampus; entorhinal cortex; memory; relational representation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Motivated by a recent neuroscientific hypothesis, some theoretical studies have accounted for neural cognitive maps in the rodent hippocampal formation as a representation of the general relational structure across task environments. However, despite their remarkable results, it is unclear whether their account can be extended to more general settings beyond spatial random-walk tasks in 2D environments. To address this question, we construct a novel cognitive model that performs memory-based relational decision-making tasks, inspired by previous human studies, for learning abstract structures in non-spatial relations. Building on previous approaches of modular architecture, we develop a learning algorithm that performs reward-guided search for representation of abstract relations, while dynamically maintaining their binding to concrete entities using our specific memory mechanism enabling content replacement. Our experiments show (i) the capability of our model to capture relational structures that can generalize over new domains with unseen entities, (ii) the difficulty of our task that leads previous models, including Neural Turing Machine and vanilla Transformer, to complete failure, and (iii) the similarity of performance and internal representations of our model to recent human behavioral and fMRI experimental data in the human hippocampal formation.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 1539
Loading