A Hybrid Approach for Transliterated Word-Level Language Identification: CRF with Post-Processing Heuristics
Abstract: In this paper, we describe a hybrid approach for word-level language (WLL) identification of Bangla words written in Roman script and mixed with English words as part of our participation in the shared task on transliterated search at Forum for Information Retrieval Evaluation (FIRE) in 2014. A CRF based machine learning model and post-processing heuristics are employed for the WLL identification task. In addition to language identification, two transliteration systems were built to transliterate detected Bangla words written in Roman script into native Bangla script. The system demonstrated an overall token level language identification accuracy of 0.905. The token level Bangla and English language identification F-scores are 0.899, 0.920 respectively. The two transliteration systems achieved accuracies of 0.062 and 0.037. The word-level language identification system presented in this paper resulted in the best scores across almost all metrics among all the participating systems for the Bangla-English language pair.
0 Replies
Loading