Abstract: We study the lifted multicut problem restricted to trees, which is np-hard in general and solvable in polynomial time for paths. In particular, we characterize facets of the lifted multicut polytope for trees defined by the inequalities of a canonical relaxation. Moreover, we present an additional class of inequalities associated with paths that are facet-defining. Taken together, our facets yield a complete totally dual integral description of the lifted multicut polytope for paths. This description establishes a connection to the combinatorial properties of alternative formulations such as sequential set partitioning.
0 Replies
Loading