Large Pre-trained time series models for cross-domain Time series analysis tasks

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Supplementary Material: pdf
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Time Series Forecasting, Self-supervised learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Novel time-series segmentation and self-supervised training for building general pre-trained time-series models capable of time-series analysis across multiple domains.
Abstract: Large pre-trained models have been instrumental in significant advancements in domains like language and vision making model training for individual downstream tasks more efficient as well as provide superior performance. However, tackling time-series analysis tasks usually involves designing and training a separate model from scratch leveraging training data and domain expertise specific to the task. We tackle a significant challenge for pre-training a general time-series model from multiple heterogeneous time-series dataset: providing semantically useful inputs to models for modeling time series of different dynamics from different domains. We observe that partitioning time-series into segments as inputs to sequential models produces semantically better inputs and propose a novel model LPTM that automatically identifies optimal dataset-specific segmentation strategy leveraging self-supervised learning loss during pre-training. LPTM provides performance similar to or better than domain-specific state-of-art model and is significantly more data and compute efficient taking up to 40% less data as well as 50% less training time to achieve state-of-art performance in a wide range of time-series analysis tasks from multiple disparate domains.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6019
Loading