Detecting Blinks from Wearable Cameras using Spatial-Temporal-Aware Deep Network LearningOpen Website

Published: 01 Jan 2023, Last Modified: 05 Nov 2023ETRA 2023Readers: Everyone
Abstract: Blinks have been widely studied in various fields including medical and human computer interactions, and in driver fatigue. Automatic detection of blinks has valuable practical importance. While existing deep neural networks excel in extracting spatial features from images and demonstrate impressive performance in visual object recognition, their application for blink detection in videos on a frame-by-frame basis is suboptimal, as they only consider spatial features from single images. In this paper, we developed a spatial-temporal-aware deep learning framework that capitalizes on the rapid advancements of the existing state-of-the-art visual object recognition networks, aiming to enhance their performance specifically in blink detection. Our framework takes consecutive frames as input to extract spatial and temporal features simultaneously for better detection of eye movements. We also propose a sliding window re-sampling strategy to mitigate overfitting on training data. Extensive experimental evaluations and comparisons demonstrate the feasibility of the proposed algorithm, which delivers excellent performance for detecting blinks.
0 Replies

Loading